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1. INTRODUCTION AND OUTLINE

Since the late 1970's there has been an increasing interest in the physical
properties of materials possessing a quasiperiodic or otherwise selfsimilar
structure. For a recent survey see e.g. ref. 2. Models of physical systems
possessing a quasiperiodic order, are usually studied through successive
periodic approximations. In many cases, selfsimilar and quasiperiodic
models can be considered as the fixed point of a renormalization operator.
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We show how transfer matrix models on chains that are self-similar (renor-
malizable) with respect to a substitution rule can be transformed from multi-site
models in which transfer matrices depend on the nature of a finite number of
neighboring sites, to on-site models in which transfer matrices depend on the
nature of one site only. We present sufficient conditions and show that these
conditions are satisfied in the case of quasiperiodic chains of two symbols that
are renormalizable with respect to an invertible substitution rule. We illustrate
the application of our results to tight-binding Schrodinger equations modeling
the electronic behavior of self-similar chains of atoms and to models describing
the transmission of light through self-similarly stacked multilayers.
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For instance, the celebrated quasiperiodic Fibonacci sequence of two letters
a and b is a fixed point of the substitution rule a: (a, b) -» (ab, a).

In the one-dimensional context of selfsimilar chains, many physical
models can be formulated in terms of transfer matrices, cf. e.g. refs. 4,
11, 12. A classical example is the nearest neighbour tight binding model
describing the electrons on a chain of atoms, with Hamiltonian

where |i are on-site states forming an orthonormal basis of the Hilbert
space containing the states for the entire chain. The ti, j are the hopping
terms from site i to site j and Vi is the local potential at site i.

Let us consider chains of two types of atoms a and b, and let hopping
terms t i , j ^ 0 only if i and j are neighbours (nearest neighbour inter-
actions). The hopping terms depend on which types of atoms appear at site
i and j (throughout this paper, always i,jeZ). When the atom at site i is
of type a and at site j of type b, we write ti,j = ta ,b , and a similar conven-
tion will be used for the potential terms Vi. Thus we have ti,i+1 e
{ta , a , tb,b, ta,b , tb,a} and Vi e { Va, Vb} (a natural physical assumption will
be that ta,3b = t b , a) . The energy spectrum can be found from solving the
Schrodinger equation HP = EP which, after identifying P = E i - V i - | i ,
gives rise to the difference equation

We may write the difference equation (2) as4

with

and<9 i =(Fi, Vi+l)
T.

This model has been studied with ti,i+1 = 1 for all i (diagonal model)
and also with Vi= 0 and t i , i+l :=t i+1 and ti,i_1 :=ti with tj e {ta, tb] (off-
diagonal model) in which case one models a chain with a sequence of
bonds of type a and b, rather than different sites (cf. also Section 3.1).

4 In the literature, the usual convention is to write <9i+1 = Ti. We have chosen for another
convention such that the order of the transfer matrices automatically will correspond to the
order in which symbols occur in words.



The transfer matrix formulation of the Schrodinger equation is very
useful in studying the eigenstates and the energy spectrum of H.

The diagonal model (with ti,i + 1 = 1 for all i) leads to an on-site trans-
fer matrix model in which each transfer matrix depends on the nature of
one site only. Hence, the transfer matrix connecting Pi-q with 0, is
T,i-q+1 x ... x Ti, where T i=Ta if site j is of type a and Tj=Tb if site j
is of type b. The order in which the symbols occur in the chain thus
corresponds precisely to the order in which the transfer matrices appear.

Let us now consider a substitution rule, e.g. the Fibonacci substitution
rule a that is defined by a(a) = ab and a(b) = a. Suppose we build a
quasiperiodic chain using the Fibonacci substitution rule, then successive
application of a on the seed a leads to a\->ab\—> aba -> abaab - > . . . .
Assuming periodic boundary conditions one finds that the periodic infinite
chain with unit cell a k(a) converges towards a quasiperiodic chain as k
goes to infinity. This quasiperiodic chain is a fixed point of a.

In the case of on-site models it is clear how an application of a sub-
stitution rule T leads to an application of the substitution rule i at the level
of transfer matrices. Namely, the transfer matrices after the application of
the substitution (inflation) rule are found by applying the substitution rule
directly to the corresponding chain of transfer matrices, e.g. in the case of
applying a to the seed a we obtain on the level of transfer matrices
Ta ^ Ta x Tb -» Ta x Tb x Ta * Ta x Tb x Ta x Ta x Tb ^.... In this
context we will call an on-site transfer matrix model renormalizable when
it admits a substitution rule on the transfer matrices that corresponds to
the substitution rule on the chain (the substitution rules need not be identical).

In the case of multi-site transfer matrix models it is less obvious what
the consequences of the renormalization procedure by substitution of a and
b are on the level of the transfer matrices. Certainly, a substitution of a and
b does no longer correspond to a straightforward similar substitution of
transfer matrices ta and tb.

In studies of the off-diagonal model it was found that with appropriate
choices of building blocks of transfer matrices one can transform the offdiag-
onal model into a diagonal one, cf. e.g. refs. 10, 12, 13. The present paper is
partly motivated by these works and deals with transformations from multi-
site to renormalizable on-site transfer matrix models in a more general setting.

The main question we would like to address is:

Given a transfer matrix model on a selfsimilar chain that is
renormalizable with respect to a substitution rule T. Suppose the
transfer matrix model is of multi-site type, i.e. the transfer
matrices depend on the nature of more than one site. Then, under
what circumstances can we transform the multi-site transfer
matrix model into a renormalizable on-site transfer matrix model?
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We will address this question in the general context of n-symbol
alphabets and m-site transfer matrix models. We will pay attention in par-
ticular to the case of two-letter alphabets and two- and three-site transfer
matrix models, such as those arising from the tight binding model (1) .
Because on-site models are easier to treat than multi-site models it is
important to know whether one can transform one into the other. For
instance, a transformation to an on-site model enables the use of trace
maps (for further remarks and references see Section 4).

We will discuss our results in the context of electronic spectra of
selfsimilar chains, as mentioned above, but also in the context of optical
transmission properties of selfsimilarly stacked multilayers.

We will consider two types of transformations: alphabet transforma-
tions and transformations related to decomposition properties of transfer
matrices.

Example 1.1 (Alphabet Transformation). Consider a two-site
transfer matrix model with transfer matrices T i , i + 1 , and a chain with two
types of sites (atoms) a and b. Let the chain be renormalizable with respect
to the Fibonacci substitution rule a(a, b} = (ab, a).

We propose to transform the alphabet S= {a, b} into a new alphabet
5 = {A, B} with A := a(a) = ab and B :=a(b) = a. Note that a(a) and a(b)
both have the symbol a at the left. We try to construct new transfer
matrices in terms of the new alphabet. We start with TB. Because a(b) = a
we propose TB = Ta , where the question mark needs to contain a letter
ensuring compatibility. We propose therefore that the question mark be an
a such that TB= Ta,a and in writing out the product TB x TB the indices
match up. Similarly, since a(a) = ab, we can construct TA = T a , ? x Tb,?

which leads after filling in the question marks to TA = Ta,b x Tb ,a .
One now easily checks that when a n ( w ( a , b)) = wn(a, b), with

w ( a , b ) e S * , that a n ( w ( A , B)) = wn(A, B) = wn + 1 ( a , b ) , and that TW n ( A , B } =
wn(TA, TB) (keeping in mind periodic boundary conditions). For instance,
T a

3
a ) = Tabaab = T a , b x Tb, a x T a , a x T a , b x Tb, a and Ta 2 ( A ) = TAxTBxTA

= Ta, b
 X Tb, a - T a , a X T a , b X Tb,a.

Hence in terms the two-site transfer matrix model on the a — b chain
with transfer matrices T has been transformed to an on-site transfer matrix
model on an A — B chain with transfer matrices T, while preserving its
renormalizability with respect to a.

Remark 1.2. The transformations in Example l.l are precisely
those used in refs. 10, 12, 13. In relation to these references, it should be
noted that the juxtaposition rule Si+1 = S iS i_1 (with S0 = b , S 1 = a ) is
equivalent to applying the Fibonacci substitution rule to the seed a.
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In the context of alphabet transformations, our main (technical) result
is a generalization of the procedure presented in Example 1.1, and presented
in the following theorem:

Theorem 1.3. Let S:= {s1,...,.sn} be an n-symbol alphabet and let
S* denote the collection of all possible words (of finite length) with sym-
bols from the alphabet S. Let r: S — > S * be a substitution rule. Suppose we
have an m-site transfer matrix model

with 6i := (yi,..., ¥i+p)
T, on a chain that is selfsimilar (renormalizable)

with respect to a substitution rule r. Suppose that for some value of k the
words Si = T k ( s i ) can be written as a concatenation of three words in
S*: si = w l W i W r , where w, and wr are independent of i and of length /
and r, such that l + r = m — 1. Then the m-site transfer matrix model can be
transformed by an alphabet transformation into a renormalizable on-site
transfer matrix model with the new alphabet S := {s1,..., sn} and the same
substitution rule r.

Remark 1.4. The above result implies that an m-site transfer
matrix model on a renormalizable chain can be transformed into a renor-
malizable on-site model if firstly for all i= 1,..., n the r(s i)'s have their right
or leftmost symbol in common and secondly, for some k, tk applied to this
symbol produces a word of length of at least m — 1. In fact, in that case it
is clear that rm-1 acting on this symbol gives rise to a word of length of
at least m — \ such that the conditions formulated in Theorem 1.3 are
satisfied with k = m — 1.

In Section 2 we will prove Theorem 1.3 and illustrate its content with
some examples in the context of two-symbol chains and two- and three-site
transfer matrix models.

It should be noted that the conditions formulated in Theorem 1.3 and
Remark 1.4 are sufficient but not claimed to be necessary. However, in case
these conditions are not met it can often be shown that no alternative
alphabet transformations can be found. As an illustration, in Appendix B
it is proven that in the case of the Thue-Morse substitution i(a, b) =
(ab, ba) and a Fibonacci-squared substitution5 ff(a,b) = (aab,ba) no
alphabet transformations exist that transform multi-site transfer matrix

5 We call a a Fibonacci-squared substitution rule because the substitution matrix associated to
j and the substitution matrix associated to a2 (square of the Fibonacci substitution rule a)
are identical, although a2 + 5. Note however, that a is not the only substitution with this
property. We borrowed the terminology from ref. 14.
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models on chains that are selfsimilar with respect to these substitution rules
into renormalizable on-site transfer matrix models.

Invertible substitutions form an important class of substitutions. The
n-symbols ,S1,..., sn generating S* may also be considered to generate a free
group Fn. This extension allows for words containing inverse symbols
(e.g. s1). As S* may be considered as a subset of Fn, the action of
T: S—»S* can be extended in a natural way to r. Fn -> Fn. r is called inver-
tible if T is invertible in the latter context, i.e. if there exists a r-1: Fn -» Fn

such that T ° T - 1 = i d . In that case re A E ( F n ) , cf. ref. 16.
The Fibonacci substitution rule a on S= {a, b} is an example of an

invertible substitution rule, with a - 1 ( a ) = b and t r - 1 ( b ) = b - 1 a . In fact,
(on-site transfer matrix models on) quasiperiodic two-symbol chains that
are selfsimilar (renormalizable) with respect to invertible substitutions have
many features in common, cf. ref. 22 and references therein. In this context
we obtain the following theorem:

Theorem 1.5. Suppose we have an m-site transfer matrix model on
a two-symbol chain that is renormalizable with respect to an invertible sub-
stitution rule T, with i2(a) = a and i2(b)^b. Then, this transfer matrix
model can be transformed into a renormalizable on-site transfer matrix
model smith the same substitution rule T.

Importantly, Theorem 1.5 implies that the class of on-site transfer
matrix models on quasiperiodic two-symbol chains that are renormalizable
with respect to an invertible substitution include all multi-site transfer
matrix models on such quasiperiodic chains as well.

It should be noted that the cases in which r2(a) = a or r2(b) = b are
either permutations (T = id or r(a, b) = (b, a)) or substitutions with r(a) = a
or x(b) = b. Substitutions of this form are not particularly interesting in the
context of selfsimilar chains. In particular, when T is a substitution
associated with a renormalizable chain that is quasiperiodic (and not peri-
odic), then necessarily r2(a)^a and T2(b)tb.

Alternatively to alphabet transformations, in some models one may
use decomposition properties of transfer matrices in order to go from a
multi-site to an on-site model. Examples of such models are the off-diagonal
tight binding model and a light transmission model. They will be discussed
in Section 3. The constructions in these examples rely on the following
result:

Theorem 1.6. Consider an m-site transfer matrix model with trans-
fer matrices Ti-q,..., i - q + m - 1 . If these transfer matrices can be decomposed
into two matrices

266 Lamb and Wijnands



then by rearranging transfer matrices the m-site transfer matrix model can
be transformed into an m'-site transfer matrix model with m' =m- 1.

This paper is outlined as follows. In Section 2 we deal with alphabet
transformations and prove Theorem 1.3 and Theorem 1.5 and illustrate
these results in the context of two- and three-site transfer matrix models. In
Section 3 we will discuss how transfer matrix models can be transformed
from multi-site to on-site model using decomposition properties of transfer
matrices and prove Theorem 1.6. These results will be illustrated by the
off-diagonal tight binding model and a model describing the optical trans-
mission properties of stacked multilayers. The paper is concluded with a
discussion of the applications of our results, in particular in relation to
trace maps. Extended details on alphabet transformations are presented in
the Appendices.

2. ALPHABET TRANSFORMATIONS

We consider the mechanism of transforming a multi-site transfer
matrix model into an on-site model by choosing a new alphabet S con-
sisting of words in S* such that in terms of the new alphabet S the sub-
stitution rule T acting on S induces a substitution rule f on S*. The new
alphabet S should furthermore be such that it allows a multi-site transfer
matrix model on a r-renormalizable chain in S to be formulated as an on-
site transfer matrix model on a f-renormalizable chain in S.

We will focus on new alphabets S of the form §= {rk(s1), . . . , Tk(sn)} for
some value of k. In Appendix A more motivation is given for this choice.
It is obvious that with this choice of new alphabet S the action of r on S
induces an action on 5 that is identical to that of T, i.e. f = r.

We now have a way to change our alphabet while remaining renor-
malizable with respect to T. The aim is now to use the new alphabet to
construct on-site transfer matrices for the symbols in 5. In order to be able
to transform an m-site transfer matrix model into an on-site model in
this way, we need the symbols in the new alphabet (which are words in S*)
to have at least m — 1 S-symbols in common at their leftmost and/or
rightmost ends. If this is the case, we have enough information on the
neighbouring sites to be able to construct transfer matrices for symbols in
5 that are effectively independent of the neighbouring sites. This is the
content of Theorem 1.3, whose proof we will now discuss in more detail.

Proof of Theorem 1.3. The proof of Theorem 1.3 consists of the
construction of the on-site transfer matrices. We start with an n-symbol
alphabet S= {s1,,.., sn} and transfer matrices T i-q,...,, i-q+m-1 of an m-site
model. We study this model on a chain that is renormalizable with respect to
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the substitution rule r. One should note that when 9i-1 = Ti-q,...,,i-q+m-1,
we have

for all p > 1, where the product of transfer matrices is taken in such a way
that the m — \ rightmost indices of one matrix correspond to the m-1
leftmost indices of the next one. The key point now is to realize that when
we have an alphabet generated by words in S* that have all together m — 1
S-symbols in common at their leftmost and rightmost sides, that we then
may construct transfer matrices for the symbols in the S alphabet that are
independent of the neighbouring sites, as the interactions always go
through the m — 1 outer S-symbols which all S-symbols have in common.

We will now construct the new transfer matrices. Let T k ( S i ) = w lw iw r

for some positive integer value of k and all i= 1,..., n, with wr, and wr words
in S* (independent of i) of length l and r such that l + r = m — 1. Let si : =
tk(Si) = a0 ...a(i) (with aj e S and qi is the number of S-symbols in the
word r ( S i ) ) be the symbols in the new alphabet S. Note that all si share
their / leftmost S-symbols and r rightmost S-symbols. Now it is readily
verified that the following transfer matrices Ti represent the transfer
matrices arising from the word T k ( s i ) :

with the convention aj = aj mod qi (keeping in mind periodic boundary con-
ditions).

This construction is rather straightforward and natural. Note that the
construction needs nothing more than making a product of qi transfer
matrices in such a way that one can read the word si at the (r+ l ) th
indices of the consecutive transfer matrices. The rest of the indices then
automatically follow.

With this definition of Ti it is easily verified that the transfer matrices
depend only on the S-symbol at site i, and that in products Tt xTj the
indices of the original transfer matrices match perfectly.

Thus we may associate with each symbol si e S the transfer matrix Ti..
In this way we obtain an on-site renormalizable transfer matrix model with
T acting on the symbols in §. |

In the special case of two-symbol alphabets we obtain additional
results. For the class of invertible two-symbol substitutions it can be shown
that the procedure described in Theorem 1.3 and Remark 1.4 applies in all
the interesting cases. This is the content of Theorem 1.5 of which we now
present the proof.
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Proof of Theorem 1.5. It is well-known(21) that the invertible sub-
stitutions on two-symbol alphabets are generated by the three substitutions
< x . : ( a , b ) - ^ ( b , a ) , B : ( a , b ) \ - ^ ( a b , b ) , and S: (a, b)-+(ba, b). The comment
in Remark 1.4 concludes the proof. Namely, B ( a ) and B ( b ) have their
rightmost symbol (b) in common and 8(a) and S(b) have their leftmost
symbol (b) in common. Note however that ft and 6 fix b. Hence, every
substitution rule T generated by concatenating a finite number of /'s and
<5's is such that r(a) and r(b) have their leftmost or rightmost symbol in
common. As a is nothing more than a permutation of a and b, the same
conclusion holds for concatenations of /?'s, (S's and a's (including at least
one ft or S).

Finally, the lengths of the words rk(a) and rk(b) are not bounded
(with growing k) if r2(a)^a and i2(b)^b. Hence, in these cases there
exists a value of k^m - 1 such that rk(a) and rk(b) have m — 1 leftmost
and/or rightmost symbols in common. |

To illustrate our results, we will work out some examples of how the
transformation is performed in the case of two- and three-site transfer
matrix models and words in the two-symbol alphabet S= {a, b}. These are
for instance the type of models arising in the context of the nearest-
neighbour tight binding models with Hamiltonian ( 1 ) .

2.1. Two-Site Models

We consider models of the form &i-1 = Ti, i+1 &/, with <9i = (¥i, f i + 1 ) T ,
S={a,b} and substitution rule T. We can transform to an on-site model
in case r(a) and r(b) have their rightmost or leftmost symbol in common.

In case i(a) and i(b) have their leftmost symbol in common, we may
construct new transfer matrices

where it should be noted that we read the word r(s i) in the leftmost sym-
bols in the indices of the consecutive transfer matrices. In case they have
their rightmost symbol in common we read T (S i . ) in the rightmost symbols:

One example of an alphabet transformation from a one-site to a two-site
transfer matrix model was presented in Example 1.1 on an ad-hoc basis. In
the following example we illustrate the procedure following the lines of
Theorem 1.3.
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Example 2.1. Consider r ( a , b ) = (ab, abbaab). r(a) and r(6) both
have the symbol a at the left, and the symbol b at the right. Hence we have
two ways to construct the matrices TA and TB, where we take A : = r(a) =
ab and B :— r(b) = abbaab.

Method 1. Using that r(a) and i(b) both have an a at the left, we
arrive at the transfer matrices

where the words ab and abbaab are read in the leftmost indices of con-
secutive transfer matrices.

Method 2. Using that r(a) and r(b) both have a b at the right, we
may define the new transfer matrices in such a way that one reads the
words in the rightmost indices;

One should note that the constructions in both cases are equivalent (taking
into account periodic boundary conditions). Namely, the transfer matrices
obtained from method 1 can be obtained from those obtained from method
2 by moving the leftmost transfer matrix Tb,a into the rightmost position.

It is furthermore interesting to note that in contrast to the Fibonacci
substitution rule a, the substitution rule r(a, b) = (ab, abbaab) is not inver-
tible (it is the composition T1 T2 of the invertible substitution rule
T1[(a, b) = (a, aba) with the noninvertible Thue-Morse substitution rule
T2(a, b) = (ab, ba)). This example illustrates the fact that the invertibility
condition as stated in Theorem 1.5 is a sufficient condition rather than a
necessary condition for the existence of an alphabet transformation from
multi-site into on-site transfer matrix models.

2.2. Three-Site Models

We consider three-site transfer matrix models of the form

As m = 3, we need all together m — 1 = 2 common symbols in r(a) and i(b)
at the right- and/or leftmost sides. We therefore consider three cases: rk(a)
and rk(b) share (I) the two leftmost symbols, (II) the leftmost and the
rightmost symbol, or (III) the two rightmost symbols.

It should be noted that in the case of m-site models a necessary condi-
tion for the words r k (s i ) having a leftmost or rightmost symbol in common,
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is that the words T ( S i ) have a leftmost or rightmost symbol in common.
Namely, if T ( s i ) and r(Sj) do not have their left-or rightmost symbol in
common, then neither have T k ( S i ) and rk(sj). In order to have m— 1 sym-
bols in common it suffices to consider only values k < m — 1, cf. also
Remark 1.4. In the case of two-site models it suffices to consider only k = 1,
but in the case of three-site models we may need to consider k = 2 as well.

Our rules lead to the following constructions:

In the cases (I), (II) and (III) we read the words T ( S i ) respectively at
the first, second and third indices of the consecutive transfer matrices.

We illustrate these constructions with some explicit examples.

Example 2.2. Consider the noninvertible substitution rule T(a, b) =
(ab, abbaab). Note that r(a) and r(b) have a common ab at the right.
Following the construction in case (III) above we arrive at

Note that we read the words ab and abbaab in the rightmost indices of the
transfer matrices.

Alternatively, we may use the fact that T ( a ) and r(b) have a common
a at the left and a common b at the right. Following (II); one obtains

and we read the words ab and abbaab in the second (middle) indices of the
consecutive transfer matrices. Note again that the choices in (14) and (15)
differ only in the position of an outer Ta,b ,a.

Example 2.3. Consider the invertible Fibonacci substitution rule
a(a, b) = (ab, a). Because the length of a(b) is smaller than m-1=2 we
cannot directly apply our general procedure. Thus we need to apply a
to arrive at more appropriate words ak(a) and ak(b). Because a(a) and
a(b) have their leftmost symbol a in common and a2(a)^a it follows that
for some finite value of k < m — 1 we will arrive at suitable words
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(cf. Remark 1.4 and Theorem 1.5). As we consider m = 3 here, k = 2 will
suffice. And indeed, a2(a, b) = (aba, ab), such that a2(a] and a2(b) have ab
in common at the left. This leads us to follow (I) and construct

with A = ff2(a) = aba and B = a2(b) = ab which can be read from the
leftmost indices in the consecutive transfer matrices.

One again easily verifies that when a n ( w ( a , b)) = wn(a, b), that
a n ( w ( A , B)) = wn(A, B) = wn + 2(a, b), and that T = wn(TA, TB) (taking
into account periodic boundary conditions). For instance, T a 3 = Tabaab =
T a ,b ,a x Tb, a, a x Ta,a,a x Ta Tb

T
a

 x Tbta_b and Ta(A) = TA x TB = Ta A_a x
Tb, a,a

x TQi a_ b x Ta fti a x rfc a b.

3. DECOMPOSITION PROPERTIES

Occasionally there may be other methods for transforming multi-site
models into on-site models that do not rely on alphabet transformations
but use more model specific decomposition properties of the transfer
matrices instead.

It is important to recognize alternative methods to transform multi-
site into on-site models, in particular in the case of chains for which no
alphabet transformations exist with this property, e.g. in the case of
Thue-Morse and square-Fibonacci chains (cf. Appendix B).

In this section we describe two models for which such alternative
methods exist: the off-diagonal tight binding model and a model for light
transmission through stacked multilayers. These methods are based on
decomposition properties of transfer matrices. A more abstract treatment
will be presented in Section 3.3. We first consider some examples.

3.1. Off-Diagonal Tight Binding Model

The off-diagonal tight binding model, is the model (1) with V, = 0 and
? u + i : = ? < + i and ti<i_l:=ti with tjt{ta,tb} leading to the discrete
Schrodinger equation

It gives rise to transfer matrices of the form
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from which one sees that the off-diagonal tight binding model is a two-site
model. This model was studied on a Fibonacci chain in refs. 10, 12, 13 and
in these references alphabet transformations were used to transform the
two-site model into an on-site one, cf. Remark 1.2. If one studies this model
on a Thue-Morse chain such an alphabet transformation does not exist,
which raises the question whether there exist other methods for making the
model on-site.

We will show that the transfer matrices of the off-diagonal tight binding
model possess a decomposition property which enables a transformation to
an on-site model, irrespectively of the type of chain. Namely, we may
decompose Tt i+l into a product of two matrices

As a result of this decomposition property, we may construct new transfer
matrices depending on the nature of one site only.

It is clear that products of transfer matrices Tt l+l can be written in terms
of r/s, e.g.

We thus find that the off-diagonal model is a disguised on-site model,
rather than a truly multi-site transfer matrix model.6

3.2. Light Transmission Through Multilayers

Optical transmission properties in multilayers selfsimilarly stacked
according to various substitution rules, among which are the Fibonacci
and Thue-Morse rule, have been studied both theoretically(12,l7) and
experimentally.(6,3,9)

We will present two different approaches towards studying the optical
transmission properties in multilayers. One approach(12) gives rise to a

6 It should be noted that by following a similar procedure, the three-site transfer matrix model
derived from (1) can be identified as a disguised two-site transfer matrix model.
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Fig. 1. Electromagnetic wave propagation across interface of two layers.

multi-site transfer matrix model and the other approach(6) gives rise to an
on-site transfer matrix model. Both approaches are physically equivalent,
and thus these models provide a link between a multi-site model and an
on-site model irrespectively of the substitution rule. The physical problem
is illustrated in Fig. 1. In layer a there is an electric field,

Choosing the direction of z to be the direction of the interface normal,
k ( l ) k ( 2 ) denote the wavevector in layer a going in the +z, —z direction
respectively. The expressions for layer b are analogous.

Let layer a have thickness da and refractive index na, and let 0a be the
angle with the interface normal, and analogous definitions for layer b, see
Fig. 1. Let k0 be the free space wavenumber. We assume TE-polarization.
Hence E and 9E/9- are continuous at the interface.

In ref. 12, Kohmoto et al. choose as a basis,

in terms of which the values of E at either side of the interface are related
as,
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Analogous expressions hold for light passing the interface from layer b
to a.

The transmission within layer a is described by a transfer matrix,

and analogously for layer b. It should be noted that we assume the light to
be propagating through the entire sample, i.e. 0^<9a , ©b<n/2.

To each layer one thus must assign two transfer matrices: one trans-
mission matrix and one interface matrix. In terms of these matrices, the
transfer matrix model is a two-site model (as the interface matrix depends
on two consecutive layers). For the Fibonacci ordering of multilayers, an
alphabet transformation may be used to transform this two-site model into
an on-site one, cf. Remark 1.2. Namely, choosing the new alphabet
A:=ff(a) = ab and B: = a(b) = a one obtains corresponding transfer
matrices

An alternative approach was suggested recently by Bertolotti et al.(6)

Following Born and Wolf,(7) they choose as basis,

Since E and dE/dz are continuous at the interface for TE-polarization, with
this basis choice one obtains the transfer matrices

with an analogous definition for T'b. Importantly, the transfer matrix
model thus obtained is an on-site model! Hence, in this particular physical
context, by changing the basis on which to describe the problem, one can
go from a multi-site to an on-site transfer matrix model.

Let us now consider this transformation in more detail. Let Sa be a
matrix
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and let Sb be a similar matrix with indices a replaced by b. Then one easily
verifies that7

Hence, when M is a product of transfer matrices Ta, Tb, Tab, Tb_a (with
basis choice (23)) connecting a layer of type a to another layer of type a
separated by an arbitrary sequence of layers, and M' represents the same
layers in terms of T'a and T'b (with basis choice (27)), then

Analogously, when M connects two layers of type b then

Taking into account periodic boundary conditions one immediately finds
that both bases (23) and (27) lead to essentially the same transfer matrices
(as one is allowed to transfer a rightmost matrix to the leftmost position),
e.g.

3.3. Proof of Theorem 1.6

Consider a transfer matrix model with transfer matrices Tt_q ,-_9+m_ i
which can be decomposed as

with min(l1 , l2) = 0 and max(p1, p2) = m. Using this decomposition
property we may construct new transfer matrices of the form

7 Note that we assume propagation through the whole sample, i.e. 0^6a, &b<n/2.
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where q' : = q-min(l1 + 1, l2) and m : = ma\(pl + 1, p2)-min(l1 + 1, l2).
Hence, m' e {m - 1, m, m + I}, and m' < m if and only if l1 = 0, l2 > 0,
P1<m, and p2 = m. In that case m'=m-l and q' = q-1. This case is
described in Theorem 1,6. |

The construction in Section 3.1 and Section 3.2 are examples of the
above construction. In the light transmission model we encountered trans-
fer matrices occurring in pairs of the form Tf x T, 1+1 = S-1 x T't x Si+l,
leading to new transfer matrices S, x S-1 x T= T't. For the construction
in the case of the off-diagonal tight binding model see Eqs. (19)-(20).

4. DISCUSSION

In this last section we will discuss some implications of the results we
have obtained above, that illustrate the importance of recognizing the exist-
ence of transformations from multi-site to on-site models.

We will focus on the use of trace maps in the context of the tight binding
transfer matrix models with Hamiltonian (1) on two-symbol chains.8

When the transfer matrices in a model are elements of SL(2, C) (such
as those arising in the context of (1)), then by application of the
Cayley-Hamilton theorem one obtains trace maps F: (R3-> R3 mapping
(Tr(Ta),Tr(T6),Tr(Tab)) to (Tr(Tr(a)), Tr(Tr(b)), T r T ( T ) ) . These maps
are polynomial maps with integer coefficients.(1) For instance, the trace
map associated to the Fibonacci substitution rule a(a, b) = (ab, a) is given
by

The trace of T(a) is thus the jc-coordinate of Fk(Tr(TaJ, Tr(Tb), Tr(Tab)).
(For more background on trace maps see the review by Peyriere(16) and
references therein.)

In on-site models, trace maps are a useful tool in determining proper-
ties of physical models.(4,8,10-13,19,22) For instance, the energy spectrum of
the tight binding Schrodinger equation (2) can be found as the intersection
of the nonwandering set (points that do not escape to infinity) of the trace
map with a line (of initial conditions) parameterized by the energy value
£•(11, 19)9

8 For discussions on the application of trace maps in other models see e.g. refs. 4, 12.
9 Also in the optical transmission model, the intersection of a line of initial conditions

(parameterized by the free wave number) with the nonwandering set of the trace map
corresponds to wavenumbers satisfying a (quasi-) nonresonance condition implying a non-
zero transmission coefficient, cf. ref. 12.



Hence the energy spectra of Fibonacci chains with different variations
of the tight binding model (1) are all related to the same trace map (39).
The only difference between the various models are their initial conditions
(i.e. the line parameterized with E that intersects the nonwandering set
of F). For instance, the diagonal model (t,,, + i = l) has initial condition
(E-Va,E-Vb,(E-Va)(E-Vb)-2). In the case of the off-diagonal
model (17) using transfer matrices (20) is terms of which the transfer
matrix model is on-site, one obtains the initial conditions (E/ta, E/tb,
(E2— t2

a — t 2
b ) / ( t a t b ) 2 ) . In the case of the three-site model with transfer

matrices (4) more complicated initial conditions are found.
Importantly, many aspects of the energy spectrum of Fibonacci chains

are consequences of the nature of the nonwandering set of the trace
map F, and do not depend so much on the details of the line of initial
conditions. In particular, the multifractal and scaling properties of the
spectrum are closely related to the structure of the nonwandering set,
and hence shared by a large class of transfer matrix models.10 Recently,
it has been recognized that an important property of the Fibonacci sub-
stitution rule is its invertibility, and that aperiodic two-symbol chains
that are renormalizable with respect to invertible substitutions share
many important properties with the Fibonacci chain, cf. ref. 22 and
references therein. Theorem 1.5 implies that multi-site models on two-
symbol chains that are selfsimilar with respect to invertible substitutions
naturally belong to the class of on-site models on such chains, and hence
share many properties.

Interestingly, we have shown in Appendix B that in the case of
the Thue-Morse sequence and a Fibonacci-squared sequence, multi-site
models cannot be transformed into on-site models by alphabet transforma-
tions. For instance, when studying the general three-site (disguised two-
site, cf. footnote 3) tight binding model (1) the trace map formalism cannot
be applied. It would be interesting to further study the properties of such
multi-site models and compare them to the properties of on-site models. In
this respect it should also be noted that in the case of multi-site models
derived from models with neighbor interactions reaching further than
nearest neighbors, the transfer matrices will in general no longer be 2 x 2.
For recent work in the context of trace maps of n x n matrices with n > 2,
see<(5,20).

10 For more references on the spectral properties of quasiperiodic Schrodinger equations and
trace maps see e.g. refs. 2, 8, 16, 18, 22.
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APPENDICES

A. Alphabet Transformations that Are Compatible
with Renormalization

In this appendix we discuss how an alphabet S can be transformed
into an alphabet S such that the action of a substitution rule r on S
naturally leads to a substitution rule f on S.

Let us consider an n-symbol alphabet S := {s1 . . , sn). We are inter-
ested in writing a word w e S* in terms of a word w in a different n-symbol
alphabet S, where each symbol in the alphabet S is a word in S*.

The fact that the elements of S correspond to elements of S*, can be
interpreted as the existence of a morphism n from S* to S* so that for any
word it' in 3 * , u ( w ) is a word in S*.

Let us briefly illustrate this notation with an example. Let S= {a, b}
and S= {a,b3}, such that u: (a, b) i—* (abb, a). Consider the word w = abba
in S*. This word can also be expressed as a word w = ab in S*, namely
H(w) = w.

We now consider the action of a substitution rule r on words w in S*
that are equal to u ( w ) for some w in S*:

Now suppose there exists a substitution f on these words w in S* that is
equivalent to the substitution r on the words w, then

Thus if the action of a substitution rule r on words w in S* corresponds
to the action of a substitution rule f on words w in S*, then (40) and (41)
imply that the transformation ft: S* i—> S* must be such that

It is immediate from (42) that whenever we choose u ( S j ) = Tk(sj) for some
integer k > 0 and all Sj e S, Sj e S, the morphism n is compatible with the
renormalization scheme and T = T (as a substitution rule on an n-symbol
alphabet). This is the underlying reason for choosing this morphism in
Theorem 1.3. It is the most straightforward solution to (42).

In Appendix B we will make further use of (42).

822/90/1-2-19



B. Nonexistence of Alphabet Transformations from
Multisite to On-Site Models

In this appendix we will demonstrate the fact that in the case of the
Thue-Morse substitution rule a(a,b) = (ab, ba) and the Fibonacci-squared
substitution rule a(a, b) = (aab, ba) no alphabet transformations exist that
transform a multi-site transfer matrix model on these chains into a renor-
malizable on-site transfer matrix model.

Importantly, the words r(a) and r(b) do not have their leftmost or
rightmost symbol in common, and neither do d(a) and 5(b). A necessary
condition for the existence of such a transformation is that we find a u and
f such that / U ° T = T°u o r / u ° r = ff°u respectively (cf. (42)), where i(a) and
r(b) have their leftmost or rightmost symbol in common (otherwise the
indices in of the transfer matrices will never be able to match). See also
Appendix A and Section 2.

We will prove the impossibility of finding such n and f in the case of
the Thue-Morse and of a Fibonacci-squared substitution rule. We have
chosen these cases as prototypical examples of aperiodic selfsimilar two-
symbol chains generated by noninvertible substitutions T for which t(a)
and r(b) do not share their leftmost and/or rightmost symbol, with the
Thue-Morse chain being almost periodic (but not quasiperiodic) and our
Fibonacci-squared chain being quasiperiodic.

It is tempting to conjecture that whenever T fixes an aperiodic chain,
beT2(a) and aer2(b), and the words r(a) and r(b) do not have their
leftmost or rightmost symbol in common, such u and f can never be found.
However, a general result in this direction is beyond the scope of the
present paper.

B.1. Thue-Morse. In our analysis, we will give a slightly (but
equivalent) interpretation to (42). Namely, in this equation we may view
(u ,T, and f all as substitutions on n-letter alphabets Si->S*, acting on
words w(S) = w(a, b} in a natural way &s((w(S)) : = w ( u ( S ) ) = w ( u ( a ) , fi(b)),
etc. By this we circumvent complications in notation due to the difference
between the alphabets S and S. With this convention, we write out (42):

where n^a, b} : = fi(a),fi2(a, b} : = ju(b), f^a, b) :=f(a), ?2(a, b) :=f(b).
Suppose f(a) and r(b) both start with the symbol a. We will show that

there exists no substitution rule u that solves (42) when r is the Thue-
Morse substitution rule r(a, b) = (ab, ba).
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In case | u 1 | = 2|u2 | we are immediately led to r/i, =u,u,u2 and
1^2=^1- This also gives rise to (46).

In order to prove that no solution exist, we are left to show that (46)
has no solution for n,.

Suppose u(a,b) is a solution of (46). When u1 is a solution ru, is
automatically also a solution, and hence then there must be at least one
solution u that is not the image of a word w under T (such that n\ ^rw
for all w). Without loss of generality we will assume fi{ is such a word.

We now aim to reconstruct the preimage of r2u1. Note that r2u1//, ends
with u,u Because //, itself is not the image of a word and r2//, ends with
// , , |//, | must be odd. Hence, since the last r2//, ends with //,//, the last
symbol of/^ and the first symbol of / / , must form the word i(a)=ab or
r(b) = ba. However, if we know the first symbol of n\ we also know the
second symbol (because//! consists of the first/? symbols of ik(a) or Tk(b)).
Suppose that |u1,|>3. In that case nl=abb--- or nl(a,b) = baa...;
Because the preimage of //, is not the image of a word under r we find that
the last and first symbol of// , must form the word r(a) or x(b] and so must
the second and third symbol. However, aa and bb are not such words. We
are left to show that also |//i | $ 2. I / / , | + 1 because u1 must not begin and
end with the same symbol. If |I | =2 it is forced to be r(a) or r(b) which
is in a contradiction with the assumption.

We thus proved that rU and r/u2 cannot start with U,. Thus f(a) and
f(b) cannot start with the same symbol.

We are left to show that f(a) and f(b) also cannot end with the same
symbol. Let us suppose that they both end with // , . In that case one has
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We write out (43):

It is not difficult to show that the word n(a, b) must hence consist of the
first p symbols of the word r*(a) or tk(b) for some k such that |r*(a)| > p
or |r*(b)| ^ p. We use the notation |w| to denote the length of the word w,
which is in turn a shorthand notation for w(a, b).

We now use the fact that in the case of Thue-Morse |rw| =2 \w\.
Hence 2 |u2| = |ru2| > |ui |. Because T//, ^ f ^ i ^ i (no periodic word is fixed
under the Thue-Morse substitution), we hence have either |u| = |u| or
l A , l = 2 | / / 2 | .

In case | / / i l = |/J2l we have T//[=// , / /2 . If also ryU2 = // i y«2 then it
follows that u1 =u2 which leads to T//, =n\n^ which has no solution. Alter-
natively, we have ™2 =// , / / , that we may combine with T//I =//[//2 to give



Let us focus on the case that dju{ and Sn2 start with the same symbol
in //(£). Suppose they both start with u. In that case we find that
l ^ i K l ^ z l -

Note that we may restrict to 21/1, <|<r/<, <3 | / / , | and 2 |//2 <
fip2\<3 \ H i \ , leaving out the equality signs. Namely, the equality sign

applies only when fil or fi2 are words of only a's or only 6's. It is not dif-
ficult to show that such solutions cannot arise.

We will eliminate the remaining possibilities step by step. Instead of
providing proofs at every step, to reduce the length of this section we will
sketch the flow of the argument and leave some (easy) details to the reader.

Using arguments analogous to those used in Section B.I, one can
show that

These restrictions eliminate a lot of possibilities. The remaining cases
are all of the form a n l = u 1 . . .

When ffjUi=julju2iUi/U2 then length requirements enforce <r//2=u1
giving rise to cr2//, =a^l^la/ul/ul which is not allowed. Namely, since <?//,
starts with u,, one then obtains <72/i, = n\ • • • / ' , which can be ruled out
using similar arguments that establish (49).

The demonstration that this equation has no solutions for / / , is analogous
to that of (46).)

In this way we prove that there do not exist substitution rules f and /<,
with f(a) and r(b) sharing a rightmost or leftmost symbol, that solve (42)
with r being the Thue-Morse substitution rule. Hence there exist no
alphabet transformations that transform a multi-site model on a Thue-
Morse chain to a renormalizable on-site model.

B.2. Fibonacci-Squared. We now perform a similar analysis for
the case of a Fibonacci-squared substitution rule (j(a,b) = (aab, ba).

In contrast to the Thue-Morse substitution, the ratio between the
length of a word and the length of its image under a is not constant. This
will complicate the analysis slightly. We find
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to consider the extra possibilities TJI[ =/^2/^2/"i ' Wi-li\-> and ^1=^2^1.
T/"2 = /"!/"! which leads to



When (Tfti = HiH2 't follows that \n\ < |//2| <2 1/u, |, leaving still many
possibilities. However, it is not difficult to show that <r//2 //«i • --H\
because that would imply that (T2//,=/i, • • • / / ! , and that d^2 ± •••n\n2

because that would imply that ^2= • • • / / , giving d/ul=/Ui • • • / * ! . There is
only one S/u2 possibility left to check, namely a / u 2 = u l u u 2 . In this last
case, it would follow that ^2 =//,... which would imply that ff/al=/.tl^l...
which is ruled out in (49).

Finally, when a/ul=ju[^2^2 length requirement enforce S^2=^l giving
rise to <52//\=n\ • • • n\.

Now we exhausted all possibilities of fi{il and <5^2 starting with /^ , .
The rest of the proof consists of verifying that they also cannot both start
with ^2 or both end with jn{ or n2. This verification follows similar
arguments as presented above and will be omitted.
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